
Symmetry breaking in the early universe and accelerated frames

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 335

(http://iopscience.iop.org/0305-4470/16/2/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 335-345. Printed in Great Britain 

Symmetry breaking in the early universe and accelerated 
frames? 

T Padmanabhan 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India 

Received 21 January 1982 

Abstract. The formulation of symmetry breaking in a manifold with non-trivial metric is 
discussed. It is shown that a conformally coupled self-interacting scalar field exhibits 
spontaneous symmetry breaking in a RW universe. The non-trivial implication of this 
result to cosmology is discussed. The effective potential in the static space-time is computed 
to see the effect of one-loop connections. A self-consistent solution is given. In the later 
part of the paper it is suggested that accelerated frames also have similar effects on the 
symmetry breaking scheme. Its implications are discussed. 

1. Introduction 

One of the major triumphs of theoretical physics in the previous decade was the 
unification of electromagnetic and weak interactions (Abers and Lee 1973). The 
success of this theory depends crucially on the idea of spontaneous symmetry breaking 

It would be necessary sooner or later to include the effects of gravity into the 
scheme. To the extent that quantum gravity effects are negligible, this can be achieved 
by doing field theory in a curved space-time (for a review, see Gibbons (1979)). The 
gross features of gravity are already being incorporated in the applications of GUTS 

to the early universe scecario. But it is also necessary to examine the sfrucfure of the 
theory in a curved space-time. Qualitatively speaking, symmetry breaking arises 
because the asymmetric state is energetically favourable to the symmetric one. Hence, 
if there exists any external interaction (like the existence of the non-zero temperature), 
it can restore or break the symmetry, depending on the relative strength. Since 
gravitational interactions cannot be neglected during the early stages of the universe, 
it is necessary to examine this question in detail. 

There is another motivation for this study. It has been noted by various people 
(see for example De Witt 1979) that a uniformly accelerated frame resembles, in some 
sense, a thermal bath. It is well known that the symmetry of a spontaneously broken 
theory can be restored at sufficiently high temperatures (Linde 1979). These results, 
when combined, raise serious questions about the general covariance of the scheme. 
This is a crucial point to be settled before one can meaningfully talk about the field 
theory in the curved space-time. 

(SSB). 

f Extended version of the essay selected for 'Honorable Mention' in the Gravity Research Foundation 
Essay Contest, March 1981. 
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The above is applicable to Schwarzschild and de Sitter space-times as well-since 
they also behave like ‘space-times with a thermal bath’ (Gibbons and Hawking 1977). 
Naively, one would expect the symmetry to be restored at small mass values of the 
Schwarzschild space-time. 

We shall study some of these questions in this paper. We begin by considering a 
self-interacting scalar field in an open Robertson-Walker space-time. We show 
that a conformal coupling to the curvature can induce symmetry breaking in a very 
natural way. (No assumptions need be made about the bare mass and coupling constant 
values.) The massive model is also discussed, which shows symmetry breaking during 
a particular phase of the evolution. This result has certain non-trivial implications 
for cosmology which are discussed in the next section. The need for an external source 
for the metric is dispelled in $ 4  by using the vacuum energy density of the scalar field 
as the source. 

All the above results are valid in the strict sense only at tree level. The conformal 
coupling is also crucially used. In S: 5 ,  we use the technique of effective potential to 
incorporate the quantum closed loop corrections. Here we do away with the conformal 
coupling and consider symmetry breaking to arise from radiative corrections. 

In §§ 6 and 7 we discuss some features of symmetry breaking in the non-inertial 
coordinates. It is shown that symmetry breaking can be induced in the Milne coordin- 
ates while no such effect arises in the standard accelerated Rindler coordinates. 
However, the Rindler coordinates do act as a thermal bath as far as restoring the 
symmetry is concerned. The implication of this analysis is unclear. 

2. Scalar field in the RW universe 

Consider a space-time described by the metric (units: c = h = 1) 

ds2 = a2(t)[dt2-dX2-sinh2X(d82+sin2 8 d4’)]. (2.1) 
Here a ( t )  is a given function to be determined by solving Einstein’s equation. Our 

analysis is independent of this functional form. Consider a Lagrangian for a scalar 
field 4, of the form, 

L = t ( g w v  aw4 av4 - i ~ 4 ’ - - ~ 4 ~ ) .  (2.2) 
Here R is the scalar curvature corresponding to the metric in equation (2.1) and this 
makes the interaction conformally invariant. The term &444 (with A > 0) is added to 
make the theory renormalisable. In any interaction this term will, anyway, arise as 
a radiative correction. In this section, however, we will not worry about quantum 
corrections and will work at tree level. Also notice that the bare mass term is absent 
in the Lagrangian. The field equation reads 

VwVw4 +$R4 +$Ad3 = 0. (2.3) 
Consider now the vacuum expectation value (VEV) of the field 4 (x) .  Let 

(014 (2, t) lO> = t7 (2, t ) .  (2.4) 
In standard field theory, the Lagrangian is translationally invariant, and hence 77 
cannot depend on the space-time coordinates. In field theory with an external 
potential, the Lagrangian possesses only a limited symmetry. We can impose on t7 
only those symmetries respected by the Lagrangian. Thus, from the isotropy and 
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homogeneity of the universe, it follows that 

v ( t , f ) = 7 7 ( f ) .  (2.5) 

One has now to decide the form of T ( r ) .  In principle this can be done only through 
calculating the effective (quantum) potential. However, at tree level, this can be done 
very simply by taking the VEV of equation (2.3) and using, at tree level, 

(2.6) (014~10)  = (01410)~ = 7 7 3 .  

v , v ~ ~  + ; R ~  +f,iV3 = o 
This leads to the equation 

(2.7) 

or, in expanded form, 

i j  +(2U/a) i  + ( u / a  - 1 ) ~  +fAa2q3 = 0 (2.8) 

(where dot denotes differentiation WRT time). Quite clearly 77 = 0 is a solution where 
there is no symmetry breaking. The question is to find out whether that is the most 
stable solution. Make a substitution (suggested by the fact that the equations are 
conformally invariant) 

t7 U) = ( 3 / A  ) " 2 f ( t ) / a  ( t )  (2.9) 

in equation (2.8), which will lead to 

f + f 3  - f  = 0. (2.10) 

This is the Duffin-Loret equation well known in the theory of oscillations, By 
inspecting its general solution (which is an elliptic integral) 

(2.11) 1 t = d f ( c  + f 2  - '/)-1'2 - -2<c<co  J 
or by considering the behaviour of small perturbations, one can easily see that the 
stable solution is not f = 0 but f = z t l .  Thus the stable solution has a non-zero VEV 

for d(x) given by 

(014(t, ~110) = v ( t )  = *(3/A)''*(1/a(rj). (2.12) 

In a later section, we shall explicitly show that this solution is energetically more 
favourable than the 77 = 0 solution. 

Notice that this symmetry breaking arises solely because of the existence of the 
non-trivial metric. One need not assume any special values for the parameters that 
appear in the Lagrangian. The physical field can be obtained from the 4 ( x )  by the 
usual shift, 

(2.13) cL(x 1 = 4 (x 1 - 77 (x) 

which will lead to a time dependent mass for 9(x )  given by 

m,$(t) = 3/a2(t) (2.14) 

which vanishes for large expansion factor. 
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Now let us consider the effect of introducing a bare mass into the Lagrangian 

2 = + [ g P v  aw4 a d  - ( m 2 + & ) 4 2 - b 4 4 ] .  (2.15) 

(2.2). Consider now the Lagrangian, (2.2) 

This leads to the following equation for f(t) 

f + ( m 2 a 2 ( t ) - l ) f + f 3 =  0.  (2.16) 

Unfortunately, one cannot solve this equation in closed form for an arbitrary a( t ) .  
However, the following conclusions can be made. In the early stages of the universe, 
a ( t )  - 0 and hence our previous analysis is applicable. There is a symmetry breaking 
at this epoch. However, as a ( t )  increases, the coefficient off will become large and 
positive. As one can see, by an analysis of small perturbations, this would make the 
f =  0 solution stable. Thus only for a particular epoch would the symmetry remain 
broken. 

3. Phase transitions and CP violaticn 

The above analysis has non-trivial implications in a realistic field theory. First of all, 
consider the question of phase transitions in finite-temperature field theory. In the 
standard GUTS model, symmetry is expected to be restored during the early stages of 
the universe. This arises partly because of the high-temperature symmetry restoration. 
However, our analysis shows that a symmetry-breaking effect can arise because of 
the same metric. From equation (2.12) it is clear that this effect tries to restore 
symmetry at large times (a -+a) and tries to break the symmetry at the early stages 
of the universe (a  + 0). Thus this opposes the normal high-temperature behaviour 
and hence it is crucial to decide which effect predominates. This can be done as follows. 

One can roughly estimate the temperature required for symmetry restoration ( TsR) 
as 

~ T ~ ~ ~ ( O / ~ / O ) C ~  = q ( r ) c 2  ( k ,  c + 1) (3.1) 

TSR = (3/A Hila 0)) (3.2) 

so that 

(units: k = c = h = 1). 

But, as is well known, the temperature of the early universe (Weinberg 1972) falls as 

Tuniverse = B / a  ( t )  B = constant. (3.3) 

TSR/ TuniverSe = constant, independent of time. (3.4) 

In other words, 

Thus the actual temperature of the universe is always higher or always lower than 
tile temperature required for the symmetry restoration. In other words, no high- 
temperature phase transitions can occur in this simple model! 

One should keep in mind that the model is very idealised. Still it shows the 
necessity of taking into account detailed features of gravitational interactions before 
confident predictions about the early universe can be made. 

Another important feature arises when one considers a realistic system of fields. 
Notice that we have introduced here a Higgs scalar field and have broken its symmetry 
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in a very natural way, If one considers vector or spinor fields interacting with d(x), 
these matter fields will pick up masses which are time dependent. 

In particular one can consider a coupling to a spinor field of the form 

3 1  = g J Y s * 4  

and treat 4 ( x )  as a pseudoscalar. When the symmetry is broken this will lead to a P 
violation and, since C is maintained, to a CP violation as well. Thus a model universe 
built on these lines has an intrinsic CP violating mechanism. 

4. Self-consistent solution 

In the previous sections a ( t )  was taken to be an arbitrarily assigned function. The 
question arises as to the source for this non-trivial metric. While one can always 
assume existence of background matter compared to which the effect of the scalar 
field is negligible, it is of importance to see whether the scalar field itself can function 
as its source. 

It has become a reasonably standard practice to use the vacuum expectation value 
of the T,, as the source for the geometry. In the present case, since d itself has a 
VEV, no divergence difficulties will arise in the lowest order. The energy momentum 
tensor for our Lagrangian reads as 

T,, =J,4 -(1/J--g)gWv +V,V, - g W Y M 2 .  (4.1) 
- 

A straightforward calculation leads to the result for the m = 0 case, as 

E ( f )  = (O/T:lO) = - 3 / 2 A a 4 ( t )  

p ( t )  = -(OlT:IO) = -1/2Aa4(t). 

RL -46LR =-8~G(O/Tr10) .  (4.4) 

a 2  -2aa + a 2  = -4~G13A ; 

(4.2) 

(4.3) 
Now one has to solve the coupled Einstein scalar equation written as 

When expanded this reads explicitly as 

a - a = 4rrG13A. (4.5) 

These are solved by the simple function 

a ( t )  = (4rrG/3A)”’ cosh t .  (4.6) 

In other words the self-consistent solution with the symmetry breaking leads to a 
nor,-singular evolution for the geometry. (Notice that a # 0 for t = 0. j This, ol̂  course, 
is possible because of equation (4.2), giving a negative energy density, thus violating 
the condition on the singularity theorem. 

In some sense we are doing a back reaction analysis here. In general, however, 
other matter besides the scalar field would be present. Because of the nonlinear 
nature of Einstein‘s equations it is not easy to find a self-consistent solution. However, 
one general remark can be made. If one considers the total Lagrangian for the system 
(there will be an explicit term representing gravity) it reads as 

T = ( R / 2 k  +$g’”a,d,d d - -Rd2/12-Ad4/12)  (4.7) 
= (1/2k -&q5‘jR +(ig’“ a,$,a,S --Ad4/12) (k = 8rrG). (4.8) 
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If (0/42/0) # 0, one can consider, to tree level, k i i  = k - ’  -:(4)’ as the effective 
gravitational constant. Note that this effective gravitational constant can be negative 
for sufficiently large (4 ’) values, making gravitation repulsive. This, in a qualitative 
sense, explains the non-singular solution (4.6). 

5. Quantum corrections and effective potentials 

In our analysis of the previous models we have confined our attention to the tree-level 
result. The potential term of the Lagrangian can be used only at this tree level to 
find the classical minima (and to decide on symmetry breaking). 

When quantum corrections are taken into account, the bare potential is replaced 
by an effective potential which can be computed as a series in closed loops. However, 
like any other field-theory correction, this involves manipulation of divergent quan- 
tities, and is meaningful only for renormalisable theories. One major feature of this 
approach is the possibility of symmetry breaking due to radiative (closed loop) 
corrections, first considered in Coleman and Weinberg (1973). This arises when the 
minimum of the effective potential lies at a non-zero value of the field. 

We shall present the effective potential for a scalar field at single-loop order. The 
rationale and methods of evaluation of the effective potential are discussed in various 
references (see, for example, Coleman (1973)) and will be omitted (we shall also omit 
straightforward but long algebra!). 

Since the aim is to consider symmetry breaking as an effect of radiative corrections, 
we shall omit the explicit curvature coupling used in the previous sections. Consider 
the Lagrangian (bare Lagrangian; counter terms for renormalisation omitted) 

(5.1) 
- 

9= J-g($gwv aw+ a& - $ m 2 4 2 - ~ A ~ 4 )  
in the metric given by 

ds2 =dr’-u’[d~’+sinh’ X(d8’+sin2 t9 d4’)]. 

In the spirit of the previous section one should have assumed a = a ( t )  arbitrary. 
However, mathematical complications are enormous when this is attempted. In order 
to simplify the situation, we shall make the metric static, by assuming a ( t )  = a = 
constant. (Our analysis in 8 2 can still be applied for a ( t )  = a = constant. Equation 
(2.8) reduces to 

(5.3) 
1 2 3  i j - q + g A ~  q = O  

which has the same structure as the equation (2.10).) 
To the lowest order (at tree level) the potential is given by 

= h ’ 4 f  +ih~: (5.4) 
where c $ ~  = (014 10) is the ‘classical’ potential. The single-loop correction can be 
evaluated by the method of Weinberg (Coleman and Weinberg 1973). One expands 
the field 4 about q5c in the Lagrangian and retains terms up to quadratic (regarding 
4c as a parameter). Let 
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The effective Hamiltonian for this Lagrangian is 

~ ~ f f ( d , ,  q )  = J d 3 2 J 3 [ '  z(doq)'+$g;i) d ,q  d jq  + $ m 2 q 2 + & : q 2 ] .  (5.7) 

The theory with Hee as the Hamiltonian has a vacuum state 10, dc) which depends on 
dC as a parameter. The effective potential is given (at unit proper volume) by the 
expression (see Coleman 1973) 

VI(#,) = ( O I W 4 c ,  d o ) .  (5 .8 )  

This evaluation is straightforward, but tedious. One has to decompose q into 
creation and annihilation operators. The wave equation for q reduces to the eigenvalue 
problem with the static Hamiltonian in equation (5.7). Fortunately this case is well 
analysed in literature (see Grib et a1 1976). One can write 

where QaIk (x) satisfies the eigenvalue equation 

with w ' ( a )  = ( l / a  ' ) (a  + 1 )  + m 2  + tAr$: and aa/k denoting the creation operator for 
the particular mode. The detailed form of is complicated and is not required by 
us. The only result we need (which is proved in Grib et a1 1976) is 

(5.11) 

Substituting in equation (5 .8) ,  the effective potential (per unit proper volume) turns 
out to be as follows. 

(5 .12)  

(5.13) 

As usual any straightforward evaluation of this integral will lead to a divergent result. 
This is to be expected since this involves the closed-loop corrections. However, one 
can renormalise the theory as regards the mass term (-d2), interaction term (Ad4) 
as well as a conformal coupling factor ( - d 2 / a 2 ) .  The last correction is similar to 
mass renormalisation in a theory with zero bare mass. Keeping these in mind, one 
can evaluate the integral in (5.13) with a series of cut-offs as ( M 2 = m 2 + ( l / a 2 ) +  
(A/2)d?) 

(5.14) 
The finite parts of the renormalisation constants can be specified by the usual tech- 
niques (see Coleman and Weinberg 1973). The momentum cut-off P has to be taken 
of the order of characteristic mass of the theory. Performing these calculations leads 
to the following final results for three different bare Lagrangians. 

VI(dc) = (1/64rz)[M4 ln(M2/P2)+z14? +ZZ~!J; + z ~ ( d ~ / a ' I ] .  
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S. I. Massive case ( m  + 0 )  m > o 
The symmetry breaking is hinted at by the existence of a non-zero minimum. In other 
words U(q5,) = a (  Vo+ V,)/a4: = 0 for a dC # 0. In this case, 

U(+,) = m2+kh4: +(h/64.rr2)[2M2 ln(m2/M2)-Aq5: -@/a2)]  (5.15) 

which is everywhere positive. Hence no symmetry breaking occurs. 

5.2. Massive case ( m  # 0 )  with m 2  < 0 

Here the symmetry is broken at the tree level with the VEV given by ( -6m2)”2 /A .  
The derivative of the effective potential goes as 

U(4,) = m2+&@: +(A/32.rr2)M2[ln(M2/-2m2)-  11. (5.16) 

Since U increases d c ,  the symmetry is broken if and only if U (0) < 0 or 

m 2  + (h /32 .1r2a2) [ ln ( l / -2m2a2)  - 11 < 0 (5.17) 

or a’> - ( l / m 2 ) ( l / x )  (symmetry is restored otherwise) where x is the solution to 

x (In i x  - 1) = 32.rr2/A. (5.18) 

In other words symmetry which is originally broken is restored for small a 2  values- 
large curvatures. 

5.3. Massless case ( m  = 0 )  

Here the perturbation technique cannot be used, since infrared singularities exist. 
One has to do the regularisation at an arbitrary point which is of limited validity. 

Thus we have noticed quite a few non-trivial features when radiative corrections 
are computed in this simplest space-time. The major one is the restoration of 
symmetry for large curvatures, starting with a theory with broken symmetry. 

6. Symmetry breaking in a non-inertial frame Milne Universe 

We shall consider an entirely different aspect of the symmetry breaking in the rest of 
the sections. It must be clear from li 2 that non-zero VEV’S arise because of the 
non-trivial coefficients in the wave equation. Since such a situation can be mimicked 
to a great extent by the choice of a non-inertial frame, it is of interest to see how the 
broken symmetry theories behave in a non-inertial frame. 

To do this in the simplest possible way, consider again the scalar field with 
interaction. Let the space be flat. In standard spherical coordinates we have 

ds2 = dT2-dr2  -r2(d0’ +sin2 0 d42) .  (6.1) 

(a2/aT2-v2)v +A,-,’ = 0. (6.2) 
Clearly, the stable solution is 7 = 0. Now consider the same flat space described in 
the Milne coordinates, given by 

T = Ae‘ cosh ,y (6.3) 

The VEV satisfies the equation 

r = A  e‘ sinh ,y 
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( A  is introduced for the sake of dimensions) which leads to the metric 

ds2 = A 2  e2‘[dt2-dX2-sinh2,y(dB2+sin2 B dd2)]. (6.4) 

This has exactly the same form as the RW metric considered in § 2. All the analysis 
in that section can be carried through leading to a VEV given by 

T ( t )  = ( l /&)(e-r /A).  (6.5) 

Thus the symmetry breaking of the theory seems to depend crucially on the system 
of coordinates used! Further investigation is required to decide how physical this 
result is. (One should bear in mind that the transformation in (6.3) covers only a 
region of the space-time and hence is somewhat unphysical.) The result certainly 
cannot be accepted per se since it predicts that a symmetric theory can break the 
symmetry by a mere coordinate relabelling. 

7. Rindler Universe 

The coordinate transformation in (6.3) does not have a simple physical meaning. A 
very similar transformation given by 

(1 + g X )  = (1 +gx)  cosh gt  

gT = (1 +gx) sinh gt 
(7.1) 

takes the flat space metric 

ds2 = d T 2  - dX2 -dy2 -dz’ (7.2) 
to the form 

ds2 = (1 + gx)2 dt2 - dx2 - dy2 - dz2. (7.3) 

These are the coordinates suited to the uniformly accelerated observer-widely dis- 
cussed in the literature (see Gibbons 1979). Our interest is to investigate a Ad4 theory 
in this coordinate frame to see whether any new effects emerge. Let the Lagrangian 
be taken to be 

(7.4) 
- 

L = t J - g ( g w v  aKdv a4 -ihd4). 

We would like to check first whether this will lead to a symmetry breaking because 
of the existence of the non-trivial metric (7.3). Consider the VEV 

(Ol4(x”)lO)=77(xK). (7.5) 

Since gKu depends only on x, q ( x F )  = ~ ( x )  only. Following the, by now familiar, 
argument, one can write the equation satisfied by 77 as 

(7.6) d277/d62-fA e2gc t7 - - 0  

where g6 = In11 + gx 1 .  By making a substitution 

77 (5 )  = e-Rtf(6) (7.7) 
one can reduce this to the form 

f - g f + g 2 f  -&if3 = 0 (the dot denotes 8/86), (7.8) 
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By doing small perturbations about the solution one can see that f = 0 is  indeed a 
stable solution. In other words the symmetry remains intact in this frame. 

However, this Rindler system can induce another effect. Consider now a 
Lagrangian with a negative square term in the mass, so that the symmetry is spon- 
taneously broken in the Minkowski coordinates. The symmetry can be restored in 
the accelerated frame (essentially it acts as a thermal bath). The derivation goes 
exactly in the same way as for any finite temperature result (Linde 1979). The 
Lagrangian is 

(7.9) 1 2 2  L = (&gp" ap4 av4 + ~ p  4 - : A ~ ~ ) J G  
with the field equation 

(O+p*-A&2)4 =o .  (7.10) 

Let & = 4 + q with (OI410) = 0, (O/&lO) = 7. Taking the vacuum expectation value of 
equation (7.10) one gets 

(7.11) 

To the lowest order one can neglect the term. (See Linde (1979) for a detailed 
discussion.) One has to quantise the physical field 4 in the accelerated frame introduc- 
ing appropriate creation and annihilation operators. Then one gets 

3q - ( A q 2 - p 2 ) ~  - 3 A 7 ( 1 J ' ) - h ( 4 ~ )  = 0. 

(7.12) 
1 d3p 

( 0 / q j 2 l 0 )  = [ - 2 (Ola;a,lO)+zero point term. 
2% 

In the accelerated frame, however, (Ola,'a,10) is not zero, but a Planckian distribution 
with the temperature T = g/2. So it gives 

(7.13) 

Substituting into equation (7.11) one sees that there are two constant solutions, 

q = o  and q 2  = p 2 / h  - T 2 / 4 =  p 2 / A  - g2/16x2. (7.14) 

Thus the symmetry is broken at low accelerations while it gets restored above values 

g = 4 . r rp /h=  (4.rr/JA)(pc3/h). (7.15) 

(For a particle of electron mass this gives lo2' cm s - ~ . )  In this respect, the general 
covariance of the spontaneously broken theory is again under suspicion. 

8. Conclusions 

We have shown that the inclusion of a non-Lorentzian metric (whether due to curvature 
or due to acceleration) changes the standard symmetry breaking results drastically. 
It is necessary to examine in detail how the predictions of a gauge theory, based on 
SSB, change when strong gravitational fields are present. 
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